遥感信息 2020, 35(1) 129-134 DOI:     ISSN: 1000-3177 CN: 11-5443/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
扩展功能
本文信息
Supporting info
PDF(2346KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
本文关键词相关文章
本文作者相关文章
PubMed
采用分段主成分和PPI的高光谱影像分类
梁远玲|简季
摘要: 高光谱遥感影像波段多且存在混合像元,特征提取以及端元提取都是高光谱影像分类必不可少的工作,分类方法的选择也是因地适宜。以福建省泉州市德化县下属某一地区的CASI影像为实验数据,基于分段主成分(segmental principal component analysis,SPCA)和纯净像元指数法(pure pixel index,PPI),提出了最小距离(minimum distance classification,MDC)和二进制编码(binary encoding,BE)的高光谱影像分类方法。实验结果表明,MDC的总体精度为69.71%,BE的总体精度为70.88%。对单一地物精度而言2种方法各有其长,MDC对道路的分类精度更高,为98.08%;而植被、耕地和水体采用BE方法的分类精度更高,分别为94.12%、98.08%、98.11%。本文提出的方法应用于CASI高光谱影像,对该研究区的地物分类研究有一定的实用性和参考价值。
关键词
Abstract:
Keywords:
收稿日期  修回日期  网络版发布日期  
DOI:
基金项目:

通讯作者:
作者简介:
作者Email:

参考文献:
本刊中的类似文章


Copyright by 遥感信息