遥感信息 2015, 30(6) 31-36 DOI:   10.3969/j.issn.1000-3177.2015.  ISSN: 1000-3177 CN: 11-5443/P

本期目录 | 下期目录 | 过刊浏览 | 高级检索                                                            [打印本页]   [关闭]
理论研究
扩展功能
本文信息
Supporting info
PDF(3280KB)
[HTML全文]
参考文献[PDF]
参考文献
服务与反馈
把本文推荐给朋友
加入我的书架
加入引用管理器
引用本文
Email Alert
本文关键词相关文章
高分一号
作物识别
玉米种植面积提取
支持向量机
光谱角
精度评价
本文作者相关文章
PubMed
用高分一号数据提取玉米面积及精度分析
郭燕|武喜红|程永政|王来刚|刘婷
摘要: 由于受到时间分辨率的影响,长期以来国内遥感技术在面积监测、作物长势监测等方面受到限制。针对此问题,该文利用“高分一号”卫星高空间和高时间分辨率的特点,应用其宽幅16m分辨率数据,结合Landsat8和RapidEye数据,采用支持向量机(SVM)和光谱角法(SAM)在许昌进行农作物(玉米)的识别和面积提取及其精度分析。结果表明,“高分一号”4个宽幅传感器的影像应用精度差别较大,其中WFV3数据的作物识别与种植面积提取精度最高,高于Landsat8,与RapidEye接近;而WFV1和WFV4数据的应用效果较差,不太适用于试验区内复杂的秋季作物类型的识别。总体上讲,SVM分类器的分类精度和Kappa系数都要好于SAM分类器,相比之下SVM更适合于农作物的识别和种植面积提取。
关键词 高分一号   作物识别   玉米种植面积提取   支持向量机   光谱角   精度评价  
Maize Recognition and Accuracy Evaluation Based on High Resolution Remote Sensing (GF-1) Data
Abstract: High resolution remote sensing satellite (GF1) is the first satellite for earth observation system and also is the first civil satellite in China,which owns the imaging ability of high resolution and information of wideswath remote sensing.It is very important to bring into play its function to serve the society.In this study,wideswath remote sensing data with resolution of 16m,integrated with Landsat8 and RapidEye data were selected to recognize maize by Support Vector Machine (SVM) and Spectral Angle Mapper (SAM) method in Xuchang area.The results showed that the precision of classification was of a great difference among the four sensors.In particular,WFV3 was of the highest accuracy to identify crops and planting area,and the accuracy was higher than Landsat8 and close to RapidEye.In regard with WFV1 and WFV4,the application effect was poor,which was less applicable to identify types of complex autumn crops.In brief,the classification accuracy of SVM classifier and Kappa coefficient is better than SAM classifier,and it can be concluded that SVM is more suitable for the identification of crops and planting area of extraction in this area.
Keywords: GF-1   maize classification   area recognition   support vector machine (SVM)   spectral angle mapper (SAM)   accuracy evaluation   
收稿日期 2014-10-15 修回日期 2015-01-19 网络版发布日期 2015-12-14 
DOI: 10.3969/j.issn.1000-3177.2015.
基金项目:

高分辨率对地观测系统重大专项项目(09-Y30B03-900113/15);河南省科技成果转化项目(14220111033);河南省农业科学院农业科技创新项目(201315618)。

通讯作者: 郭燕(1983—),女,博士,助理研究员,主要从事农业遥感与信息技术研究。E-mail:10914063@zju.edu.cn
作者简介: 郭燕(1983—)|女|博士|助理研究员|主要从事农业遥感与信息技术研究。E-mail:10914063@zju.edu.cn
作者Email:

参考文献:
本刊中的类似文章
1.吴涛, 阮祥伟, 谭剑波.支持向量机在SAR图像解译中的研究进展[J]. 遥感信息, 2009,0(5): 90-
2.尹继豪, 王义松.高光谱遥感影像中最佳谱段的快速选择方法[J]. 遥感信息, 2010,0(3): 3-


Copyright by 遥感信息